Ureide Catabolism in Soybeans
نویسندگان
چکیده
منابع مشابه
Asparagine and boric Acid cause allantoate accumulation in soybean leaves by inhibiting manganese-dependent allantoate amidohydrolase.
Our previous work demonstrated substantial accumulation of allantoate in leaf tissue of nodulated soybeans (Glycine max L. Merr., cv Williams) in response to nitrogen fertilization. Research was continued to determine the effect of nitrate and asparagine on ureide assimilation in soybean leaves. Stem infusion of asparagine into ureide-transporting soybeans resulted in a significant increase in ...
متن کاملThe ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice.
Several ureides are intermediates of purine base catabolism, releasing nitrogen from the purine nucleotides for reassimilation into amino acids. In some legumes like soybean (Glycine max), ureides are used for nodule-to-shoot translocation of fixed nitrogen. Four enzymes of Arabidopsis (Arabidopsis thaliana), (1) allantoinase, (2) allantoate amidohydrolase (AAH), (3) ureidoglycine aminohydrolas...
متن کاملThe Ureide-Degrading Reactions of Purine Ring Catabolism Employ Three Amidohydrolases and One Aminohydrolase in Arabidopsis, Soybean, and Rice1[W]
Several ureides are intermediates of purine base catabolism, releasing nitrogen from the purine nucleotides for reassimilation into amino acids. In some legumes like soybean (Glycine max), ureides are used for nodule-to-shoot translocation of fixed nitrogen. Four enzymes of Arabidopsis (Arabidopsis thaliana), (1) allantoinase, (2) allantoate amidohydrolase (AAH), (3) ureidoglycine aminohydrolas...
متن کاملUreide biosynthesis in legume nodules.
In tropical legumes like Glycine, Phaseolus and Vigna sp., ammonia as direct product of symbiotic nitrogen fixation is converted to ureides (allantoin and allantoic acid) and they were translocated to the shoots as nitrogen source. In the xylem sap of soybean in reproductive phase the ureides reached to 60-75% of soluble nitrogen. In nodules infected cells (plastid and mitochondria) and uninfec...
متن کاملBacteroid proline catabolism affects N(2) fixation rate of drought-stressed soybeans.
In prior work, we observed that soybean (Glycine max L. cv Merr.) seeds inoculated with a mutant Bradyrhizobium japonicum strain unable to catabolize Pro (Pro dehydrogenase(-) [ProDH(-)]) resulted in plants that, when forced to depend on N(2) fixation as the sole source of nitrogen and subjected to mild drought stress, suffered twice as large a loss in seed yield as did plants inoculated with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Physiology
سال: 1988
ISSN: 0032-0889,1532-2548
DOI: 10.1104/pp.86.4.1084